
Knowledge-Based Systems 227 (2021) 107200

o
I
a
l
l
i

a
V
N
v
e
t
i
t

(

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Image generation from textwith entity information fusion
Deyu Zhou a,∗, Kai Sun a, Mingqi Hu a, Yulan He b

a School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast
University, China
b Department of Computer Science, University of Warwick, UK

a r t i c l e i n f o

Article history:
Received 11 January 2021
Received in revised form 21 May 2021
Accepted 2 June 2021
Available online 6 June 2021

MSC:
00-01
99-00

Keywords:
Image generation from text
Entity information fusion
End-to-end frameworks
Entity Matching Score

a b s t r a c t

Image generation from text is the task of generating new images from a textual unit such as word,
phase, clause and sentence. It has attracted great attention in both the community of natural language
processing and computer vision. Current approaches usually employ an end-to-end framework to
tackle the problem. However, we find that the entity information, including categories and attributes
of the images, are ignored by most approaches. Such information is crucial for guaranteeing semantic
alignment and generating image accurately. For two pictures of the same category, the emphasis of
the corresponding text description may be different, but the images generated by these two sentences
should have some similarities and the generation process can learn from each other. Therefore,
we propose two novel end-to-end frameworks to incorporate entity information in the process of
image generation. For the first framework, an image representation is generated from entity labels
using the variational inference mechanism and then fused with the representation generated from
the corresponding sentence. Instead of fusing the images in high-dimensional space, images are
inferred and fused in the latent space (the low-dimensional space) in the second framework, where
computationally intensive upsampling modules are shared. Moreover, a novel metric (Entity Matching
Score) is proposed to measure the degree of consistency of the generated image with its corresponding
text description and the effectiveness of the metric has been proved by the generated samples in
our experiments. Experimental results show that both the proposed frameworks outperform some
state-of-the-art approaches significantly on two benchmark datasets.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Image generation from text, aiming at generating images based
n natural language texts, is an interesting but challenging task.
t can find applications in computer aided design, text illustration
nd data augmentation. As a hot research topic, it has attracted a
ot of attentions in recent years [1–3]. However, due to the chal-
enges faced in language understanding and image generation, it
s far from being solved.

There are many related methods making progress on this task
nd they are usually based on two kinds of generative model,
ariational Auto-Encoder (VAE) [4] and Generative Adversarial
etworks (GAN) [5]. Yan et al. [6] tried to encode the text by
ariational inference and generate images in decoder and Razavi
t al. [7] leveraged VAE with the deep autoregressive model and
hen estimate the density of pixel space by probability factor-
zation directly. However, these VAE-based methods always have
he problem of blurred generated images. Since the introduction
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of GAN [5], methods for text to image generation have shown
some promising results. These methods learn to generate an
image from a global sentence embedding in generator and judge
the authenticity and relevance of the image by discriminator.
StackGAN [2] designed a multi-stage model to generate higher
resolution images step by step and this framework was followed
by later work. Recently, AttnGAN [3] was proposed by leveraging
attention over text for generating fine-grained images. Although
the attention mechanism can be used to learn mappings between
words of an input sentence and the corresponding parts of an
output image, it does not guarantee to learn the correct alignment
between entity words in texts and objects in images due to the
lack of supervision information.

In this paper, we explore a different way to accurately capture
entity information. The term ‘entity’ here refers to a class of in-
stances or the specific attributes in real images. For example, the
sentence ‘This little blue bird is almost completely blue with black
primary and secondaries’ describes a bird, but has a more finely
grained entity label ‘Indigo Bunting ’, which has more fine-grained
information. If we know ‘Indigo Bunting ’ is a kind of little blue bird
and learn from the images in the same category, then generating
image from this sentence will be easier than from scratch. We
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now that images with same entity often have certain similarity,
nd this information can directly affect the overall image style
r the specific objects in the image. To this end, we propose a
ovel image generation method to better incorporate the entity
nformation of the text which in turn allows generating images
ore accurately. Specifically, an end-to-end structure which com-
ines the entity-level network and the sentence-level network is
roposed to learn entity representation and global semantics si-
ultaneously. The entity representation and global semantics are

hen fused to enable the generation of better semantically-aligned
mages.

The main contributions of this paper are summarized as fol-
ows:

• We propose two end-to-end architectures to incorporate
entity information. The first one uses a class-conditional
generation framework to generate the entity image and then
fuses both the images generated from the entity and the
sentence in the image space. The second one infers the la-
tent semantics from the entity and sentence separately and
then fuses them in the latent space to generate the final im-
age. The CapsuleNet [8] is also introduced into the generator
and discriminator to further enhance entity representation
learning.

• We propose a novel evaluation metric, Entity Matching
Score (EMS), to evaluate the degree of a model capturing
entity representation. It can also be used to measure the
consistency between the generated image and the text.

• Qualitative and quantitative experiments are conducted on
two datasets, and results show that the proposed approach
significantly outperforms the existing state-of-the-art mod-
els. The methods have obvious advantages in the acquisition
of entity based on our EMS metric. The detailed ablation
study also shows the effectiveness of entity information
fusion.

. Related work

Image generation from text has attracted more and more
nterests in recent years. This task was usually formulated as the
onditional image generation problem and approaches to text-
o-image generation can be divided into three main categories,
onditional VAE-based methods, autoregressive-based methods
nd conditional GAN-based methods.
Conditional Variational Auto-Encoder (CVAE) [6] was built on

he VAE [4] in which the generative process is conditional on
ome observed variable. In the text-to-image generation task, the
ondition would be the input text. But CVAE approaches suffer
rom the same limitation of VAE that the generated images are
sually blurry.
The autoregressive-based model is to directly estimate the

ensity of pixel space by probability factorization and maximum
ikelihood estimation. The representative approaches are Pixel-
NN [9] and PixelCNN [10]. Recently, Razavi et al. [7] proposed
new method, VQ-VAE, which models the density on a low-
imension discrete latent space and then generate images by
decoder. VQ-VAE leverages VAE with the deep autoregressive
odel and it can generate high-resolution photo-realistic images.
Compared with other methods, approaches built on condi-

ional Generative Adversarial Networks (CGAN) [11] are still the
ainstream methods for text to image generation and show
romising results. Reed et al. [1] firstly proposed an effective
onditional GAN framework for text-to-image generation. Zhang
t al. [2] proposed StackGAN which generates high-resolution
mages from the low-resolution images with multi-stages. How-
ver, all of these methods are conditioned on the global sentence
2

embeddings and do not attempt to disentangle features encoding
entities and their relations described in text.

Instead of generating images from natural language sentences,
the class-conditional image generation [10,12] task aims to gener-
ate images given an image class label. Odena et al. [12] proposed
AC-GAN, which used an auxiliary classifier in the discriminator to
impose the class-conditional constraint. Miyato and Koyama [13]
proposed a projection discriminator to solve the mode-collapse
problem caused by AC-GAN and further improved the generation
performance. Instead of improving the discriminator, Zhang et al.
[14] applied the self-attention mechanism in the generator to
generate more globally coherent images. Hu et al. [15] proposed
a variational conditional generator framework to learn latent
attributes in the class category. Hinz et al. [16] attempted to
generate images from entities in the COCO dataset [17]. How-
ever, to the best of our knowledge, there is no work incorporat-
ing the entity representation into the text-to-image generation
framework.

More recently, AttnGAN [3] was proposed to learn the map-
pings between words and regions in images through the attention
on text at different stages. However, the attention mechanism be-
tween specific word and sub-region does not guarantee to learn
the correct alignment between entity words and image objects.
The following work of AttnGAN mainly focuses on the network
structure, such as the introduction of cycle structure [18] and
siamese network [19]. Compared with these methods which try
to change the network structure, our method pays more attention
to the introduction of entity information.

There are also some researches focus on the layout of the
image. Hong et al. [20] proposed a pipeline framework, which
firstly generates the semantic layout of objects from text and
then generate images. Hinz et al. [21] try to fuse the layout
encoding, spatial label and image caption to generate images in
COCO dataset. However, a lot of supervised information such as
the masks of objects and the spatial location is needed and the
data pre-processing is also very cumbersome.

In this paper, we propose two novel end-to-end text-to-image
frameworks to fuse entity information and only extra entity labels
are needed.

3. Methodology

In this section, two end-to-end frameworks with entity repre-
sentation learning are proposed for text-to-image generation. The
first framework generates an entity image from an entity label
and then fuses the entity image with the image generated from
the corresponding sentence. The second framework infers the
latent space from a given entity label and a sentence separately,
and then generates images from the fused representations. The
main difference between them is that the entity information was
fused in the high-dimensional image space in the first framework
and the second one fuses entity in the low-dimensional latent
space.

In our experiments, we implement our two frameworks based
on two representative baseline model. In this section, we first in-
troduce two baseline models used in our experiments for easy un-
derstanding, then we give detailed descriptions for two proposed
frameworks respectively.

3.1. The baseline models used to implement the frameworks

As a generative model, GAN can generate images by random
noise, and the discriminator will restrict the generated image to
be close to the real image. Conditional GAN(CGAN) [11] adds a
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Fig. 1. The structure of Stacked Generative Adversarial Networks (StackGAN).

Fig. 2. The structure of Attentional Generative Adversarial Network (AttnGAN).

Fig. 3. The text-to-image generation framework based on image space information fusion.
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lass y to the input of generator and discriminator as label, and
hen the training loss function becomes:

L(D,G) = Ex,y∼ pdata(x,y)[log(D(x, y))]+
Ez∼ pz(z),y∼ pdata(y)[log(1 − D(G(z, y), y))].

(1)

It means that GAN has different objective functions for different
labels, so we can use the labels to control the generated images.
The basic idea of text to image generation is that using text as
condition in CGAN and Reed et al. [1] has proved the feasibility
of this idea.

However, experiments show that CGAN cannot generate im-
ages with high resolution directly and specific word features
were ignored in the sentence embedding. StackGAN [22] and At-
tnGAN [3] introduced hierarchy generation and attention mech-
anism in this task and made great progress in terms of the
generation quality.

Stacked Generative Adversarial Networks (StackGAN)
StackGAN was proposed to generate images with high resolu-

tion by a hierarchical generator and the design was widely used in
the following work. The structure of StackGAN can be divided into
two stages. As shown in Fig. 1, the first stage is a standard con-
ditional GAN. The input is the sentence embedding pretrained by
the text description and Conditioning Augmentation (CA) module
is used to yield more training pairs to enhance the robustness of
the model.

In the first stage, the generated low resolution 64 × 64 image
and real data are used for adversarial training to obtain a coarse-
grained generation model; the second stage takes the results of
the first stage and original text embedding as input, and the sec-
ond generator will generate high-resolution 128 × 128 images. In
addition, both discriminators will use the sentence embedding to
determine the relevance between the text and generated image.

StackGAN++ [2] was an improved version put forward by the
same team of StackGAN and there has been some changes in
training methods, including transforming the two-stage training
process into the end-to-end training and set the generated image
size and the number of stages to be adjustable. In our following
implementations, we choose the training strategy from Stack-
GAN++ and set the size of the generated image to be 128 × 128.

Attentional Generative Adversarial Network (AttnGAN)
In StackGAN, we use the pretrained sentence embedding and

the word features has been ignored. AttnGAN focuses on the
related words in natural language description and synthesizes the
features of different sub-regions and word features of the image
by attention mechanism. The structure of the AttnGAN is shown
in Fig. 2, and the discriminators are omitted here for the same
setting as StackGAN.

As shown in Fig. 2, the input has been replaced with the
original text and the pretrained text encoder will extract feature
from text in sentence level and word level. The sentence feature
is the main input similar to StackGAN and the word features add
specific details iteratively in high level generator with attention
mechanism. In AttnGAN, a deep attention multimodal similarity
model is also added to calculate the fine-grained image-text
matching loss and make great progress in the experiments.

However, AttnGAN has not taken the specific entity informa-
tion into account either. In our work, we propose two frame-
works to fuse the entity information with the text feature and
implement our frameworks based on StackGAN and AttnGAN.

3.2. Framework1: Entity Information Fusion in Image Space (EIF-IS)

As illustrated in Fig. 3, the first framework is a twin network
based on a multi-stage generation structure [2]. The whole frame-
work is composed of an entity-level network and a sentence-level
4

network. The sentence-level network is similar to the standard
StackGAN, which extract features from sentence embedding and
transform it to the image space by a upsampling module. We
follow the practice of VCGAN [15], which employing a variational
inference mechanism to enhance the entity representation in
the entity-level network and a similar upsample operation will
extract the entity feature from entity labels. The details of the
framework is described below:

Entity Information Fusion in Image Space
We use hc to denote the image features of the entity-level

etwork and hs to denote the image features of the sentence-
evel network. Essentially, hc encodes the entity information
nd hs encodes more fine-grained information such as specific
ttributes and relations. To fuse the entity information encoded
n hi

c and the global information encoded in hi
s (i for the ith stage),

he element-wise product operation is used to obtain the final
epresentation, hi = hi

c ⊙ hi
s. Then hi is passed to a size-invariant

onvolution layer to output the final image of this stage, x =

onv3×3(hi). The generation process can be described as below:

zc = Encoderc(ϕ, c),
zs = Encoders(s),

h1
c = Upsamplingc(zc),

h1
s = Upsamplings(zs, ϕ),

h1 = h1
c ⊙ h1

s ,

X1 = Conv3×3(h1);

(2)

h2
c = Upsamplingc(h1

c , zc),

h2
s = Upsamplings(h1

s , zs),

h2 = h2
c ⊙ h2

s ,

X2 = Conv3×3(h2).

(3)

As shown in the above, a two-stage learning framework for
entence-level image generation based on image space represen-
ation fusion is given. The model can be stacked back to generate
igher resolution images. Encoderc and Encoders represent word-
evel and sentence-level hidden variable inferences. Two levels
f image features are obtained through upsampling and element-
ise multiplication fusion. Finally, a simple size-invariant convo-

ution decoder outputs the target image of the stage. In this frame,
e design two discriminators of different levels to judge semantic
elevance and entity relevance respectively.

entence-level Discriminator
Similar to the general discriminator, the sentence-level dis-

riminator Dm in the framework is used to determine whether
he input image matches a given text description condition. s
ndicates a sentence embedding. The objective function is defined
s follows:
Lm = − Exr∼pdata [logDm (xr , s)]

− Exf ∼pG

[
log

(
1 − Dm

(
xf , s

))]
.

(4)

For image x, an intermediate representation is produced
hrough the down-sampling operation of the discriminator. This
mage representation and the sentence embedding are connected
s the input of the classification network to determine whether
he image and the sentence match. The discriminator losses of all
tages are added up as the final total loss to train the generator.

ntity-level Discriminator
The original discriminator judges whether an input image is

eal or fake and whether it matches a given text description.
o ensure that the final image contains the desired entities, an
ntity-level discriminator D is proposed to learn the entity-level
c
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Fig. 4. The text-to-image generation framework based on latent space information fusion. s denotes the sentence embedding and c denotes the entity label.
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etwork. The discriminator outputs both a probability distribu-
ion over the generated entity image e, p(e|x), and a probabil-
ty distribution over the entity classes c , p(c|x). The objective
unction of the entity-level discriminator Dc includes two parts:

Le = E[log p(e = real|xr ) + log p(e = fake|xf )],
Lc = E[log p(c = cx|xr ) + log p(c = others|xf )].

(5)

here Le is the standard GAN objective [5], which maximizes the
og-likelihood for the binary classification task and is equivalent
o minimizing the Jensen–Shannon Divergence between the true
ata distribution and the model distribution. In Lc , an additional
lass, ‘others’, is introduced to label the generated image xf , which
means not belonging to any of the known entity classes.

In the case of an image containing multiple entities such as
those in the COCO dataset [17], we useMargin Loss [8] to optimize
each entity category separately. It is defined as follows:

Lk =Tk max
(
0,m+

− ∥vk∥
)2

+ λ (1 − Tk)max
(
0, ∥vk∥ − m−

)2
,

(6)

where Lk represents the k th output neuron, and takes m+
=

.9,m−
= 0.1. When the entity k appears, Tk = 1. λ is used

o weaken the influence of categories that do not appear in the
nitial learning on model optimization, usually taken as lambda =

.5. The total loss is a simple sum of all capsule losses.

.3. Framework2: Entity Information Fusion in Latent Space (EIF-LS)

Although the entity information can be injected into the model
earning through image space fusion in the first framework, the
umber of the network parameters is huge. Thus we proposed
simplified framework to fuse entity knowledge in the low-
imensional latent space, where computationally intensive up-
ampling modules are shared. In addition to this, to further im-
rove the generation performance, the Capsule network [8] is
lso used in both the generator and the entity-level discriminator
ramework. The framework is illustrated in Fig. 4.

ntity Information Fusion in Latent Space
The latent variable zc is inferred from the entity class label and

s is inferred from the sentence embedding. The dimensions of
oth latent variables are fixed to 128. We proposed three ways to

use the entity representation and the global representation: (a)

5

Summation: z = zc +zs; (b) Product: z = zc ⊙zs; (c) Concatenation:
z = [zc, zs]. We choose the best fusion method empirically. The
eneration process based on latent space representation fusion is
escribed as follows:
zc = Encoderc(ϕ, c),
zs = Encoders(s),
z = fuse(zc, zs, ϕ),
h = Upsampling(Capsule(z)),
X = Conv3×3(h).

(7)

Similar to the generation process based on image space fu-
sion, the one-stage image hidden representation h and the fused
conditional representation z is sent to the next stage for gener-
ation. The fuse function here is one of the three fusion methods
described above (noise is also added). In this frame, we design
a novel capsule layer to enhance the learning ability of entity
representation and the experiment has proved our idea.

Generator with Capsules
The basic structures of the generator are based on the Deep

Convolution GAN (DCGAN) [23]. The noise vector or conditional
vector will be first mapped to a long, narrow three-dimensional
image feature space (e.g., 1024 × 4 × 4) by a fully-connected
layer, which will be enlarged in size and compressed in channels
to output the image by upsampling operations. However, the
conditional vector usually resides in a low-dimensional space
such as 128 dimensions. The mapping from low dimensions of
128 to very high dimensions 1024 × 4 × 4 is difficult to learn by
fully-connected layer.
Thus, we design a novel Linear Capsule Layer to replace the

riginal fully-connected layer to enhance the learning ability of
ntity representation. A capsule is a new type of neuron whose
ctivity vector represents the instantiation parameters of a spe-
ific type of entity such as an object or an object part [8]. It is
uitable for modeling the latent space in the proposed frame-
ork and the following ablation study will confirm this. In our
xperiments, we use one capsule layer with 1024 bottom-shared
apsules with the input size of 16 × 8 and the output size of
024 × 16 which is reshaped to 1024 × 4 × 4.

Discriminator with Capsules
The activity vector in capsules represents the probability of
the corresponding entity [8]. Therefore, we take the capsule layer
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nstead of the last fully-connected layer for classification. An m-
imensional vector represents a particular category of entities.
he output of the capsule layer is of the size N×m, where N is the
umber of all entities. The output will be normalized by rows to
roduce N-dimension probability vector. At last, a softmax layer

is applied to the vector to output the final N-category probability
istribution. We use the capsules to improve the classification
erformance of the entity-level discriminator and constrain the
ntity-level generator better.
Also, taking the advantage of multi-task learning, we share

he downsampling operations (i.e., convolutions) of both entity-
evel and sentence-level discriminators. There are three heads
or the shared hidden image features, which correspond to the
m, pr , pc in Fig. 4 separately. The first one is the matching
ead, which reads the fused conditional embeddings and image
eatures (concatenated along the depth dimension), then outputs
he matching score of the image and the conditional input. The
econd one is the real/fake head for judging the fidelity of the
mage and the third one is the classifier head for judging if the
image contains the desired input entities.

3.4. Training

Both frameworks are implemented with conditional GAN
based methods, and the Generator G is jointly trained with the
Discriminator D. The final loss functions are given as follows:

LD = −(Ex∼P [logD(x)c] + Ex∼Q [logD(x)c])
− (Ex∼P [logD(x, s)m] + Ex∼Q [logD(x, s)m])
− (Ex∼P [logD(x)r ] + Ex∼Q [log(1 − D(x)r )]);

(8)

LG = −Ex∼Q [logD(x)r ] − Ex∼Q [logD(x)c]
− Ex∼Q [logD(x, s)m] + KL(q(zc |c, ϕ)∥p(z))
+ KL(q(zs|s)∥p(z)).

(9)

where P is the true data distribution and Q is the generated data
distribution. D(x)r denotes the probability of image x being real,
D(x)c denotes the probability over the correct entity class label
and D(x, s)m denotes the matching probability between the image
and the conditional input.

Two KL divergence terms are added to LG in Eq. (9), as the
regularization loss for constraining the latent variable zc and zs.
We assume that the latent posterior q is a diagonal Gaussian with
mean µ and standard deviation σ and the prior p(z) is a standard
Gaussian with zero mean and unit variance.

4. Experiments

We conduct experiments to evaluate the performance of the
proposed two frameworks in comparison with existing models.
We also perform ablation study to gain more insights into our
proposed frameworks.

4.1. Datasets and evaluation

Datasets. The experiments are conducted on two datasets, CUB
[24] and COCO [17], which are widely used in the text-to-image
generation task. The statistics of the two datasets are presented
in Table 1. The COCO dataset is more challenging since the images
contained involve multiple entities and more complex layouts.

Evaluation. Following the evaluation setup in the previous text-
to-image methods, Inception Score (IS) [25] is used to evaluate
the quality and variety and the generated images. IS is defined
below: ( )

IS = exp Ex∼Q [KL(p(y|x)∥p(y))] , (10)

6

Table 1
Statistics of the datasets.
Datasets CUB COCO

Training images 8,855 Over 80 k
Test images 2,933 Over 40 k
Class labels 200 80
Captions per image 10 5

where p(y|x) is the conditional class distribution, and p(y) =

x p(y|x)p(x) is the marginal class distribution. The higher IS value
ndicates that the generated images contain clearer and more
ecognizable objects. In our experiments, we use the pretrained
nception model provided in [2] to evaluate the performance of
ur approaches.
One limitation of IS is that it cannot evaluate the semantic

onsistency. A recently proposed metric, R-precision [3], is used
or measuring consistency. However, it depends on pretrained en-
oders for generating embeddings to calculate the similarity. But
he encoders employed in recent works are actually different [3,
8].
Since text and images reside in two different embedding

paces, it is hard to define the similarity between text and image.
e propose an entity-based metric, called Entity Matching Score

EMS), to evaluate the coarse-grained alignment between a given
iece of text and an image. Given a sentence and the class label
f its main entity, ci, a pretrained classifier will output Pci (x),

the probability that the generated image x contains an object
belonging to the class ci. The final EMS score is the aggregated
probabilities over N images can it can be calculated as follows:

EMS = −
1
N

N∑
i=1

log Pci (xi). (11)

The approach with lower EMS is better. In our experiments,
we use the same pretrained Inception net (the same as the one
in IS) as the classifier and the N can be set as 30,000 on CUB.

Baselines. We choose three recently proposed models as the
baselines: StackGAN [2], AttnGAN [3] and MirrorGAN [18]. In
the following experiments, we first implement two frameworks
based on StackGAN on CUB and COCO dataset, then we have done
further research based on AttnGAN on CUB dataset.

For all the experiments, the dimension of the latent variable
and the noise variable is fixed to 128. The entity class labels
are encoded as one-hot or binary representations (for multiple
attributes in CUB or categories in COCO). We choose Adam solver
with hyper-parameters set to β1 = 0.5, β2 = 0.999 and the
learning rate α = 0.0002. The balanced update frequencies (1:1)
of discriminator and generator are employed. We use the char-
CNN-RNN text encoder provided by [26] to encode each sentence
into a 1024-dimensional text embedding. The batch normaliza-
tion [27] is used in both the generator and the discriminator, and
spectral normalization [28] is used in the discriminator to make
the training more stable.

4.2. Implementation based on StackGAN

To show the effectiveness of our proposed frameworks, we
first conducted experiments with a two-stage network on CUB
and COCO based on StackGAN. The entity label we use in the
experiment is the category of the image. In the experiment, we
followed VC-GAN [15] to use variational inference to encodes the
entity information and use pretrained sentence embedding [1]
as the text information. And these two kinds of information was
then fused in the image space (EIF-IS) or latent space (EIF-LS).

The two-stage GAN generates 64 × 64 and 128 × 128 images
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Fig. 5. The frameworks based on StackGAN. The generated 128 × 128 samples from CUB test set.
Fig. 6. The frameworks based on StackGAN. The generated 128 × 128 samples from COCO test set.
r

espectively, and we compare and show the results of the second
tage with the baseline method.
We verified our framework in experiments and compared the

esults with StackGAN which are shown in Table 2. Here, EIF-IS
enotes our proposed first framework, Entity Information Fusion
n Image Space, while EIF-LS denotes the proposed second frame-
ork, Entity Information Fusion in Latent Space. From Table 2, it
an be observed that EIF-IS and EIF-LS achieve similar Inception
cores on CUB, which improve over StackGAN by 11.6%. On the
ore complex dataset, COCO, EIF-LS performs better than EIF-IS
nd outperforms StackGAN by achieves more higher score, which
ave a 14.4%. improvement compared with the baseline. The
esults show that our proposed method can make a significant
mprovement on image quality and produce the clear entity and
he sampled results will confirm this.

The samples comparison between the proposed approaches
nd the baseline is shown in Figs. 5 and 6. From Fig. 5, all three
7

Table 2
Performance comparison with StackGAN on CUB and COCO with 128 × 128
esolution.
Methods StackGAN EIF-IS EIF-LS

IS ↑
CUB 3.35 ± .02 3.74 ± .03 3.73 ± .05
COCO 7.34 ± .17 7.46 ± .30 8.40 ± .28

models have successfully generated target images related to input
text. Compared with the baseline, the images generated by the
proposed method are clearer on the vision, and the entity details
are more abundant and prominent. COCO is a more challenging
dataset. From Fig. 6, the three models have roughly captured the
main information in the text, but the details are still insufficient.
Among them, the image generated by the baseline is blurry, and
some of the components are difficult to distinguish. The main
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Table 3
Specific attributes and the corresponding parts in CUB dataset.
Parts Beak Belly Tail Wing Body

Attributes HasBillShape HasBellyPattern HasUpperTailColor HasWingPattern HasUnderPartsColor
HasBillColor HasBellyColor HasUnderTailColor HasWingColor HasUpperPartsColor
HasBillLength HasTailPattern HasWingShape HasPrimaryColor

HasTailShape

Parts Back Breast Fore-head Bird (all parts) Throat

Attributes HasBackColor HasBreastPattern HasFore-headColor HasSize HasThroatColor
HasBackPattern HasBreastColor HasShape

Parts Head Leg Crown Nape Eye

Attributes HasHeadPattern HasLegPattern HasCrownColor HasNapeColor HasEyeColor
Table 4
Comparison with the state-of-the-art models on CUB with 256 × 256 resolution.

in EMS metric is set as 30,000 on CUB.
Methods AttnGAN MirrorGAN EIF-LS

CUB IS ↑ 4.36 ± .03 4.56 ± .05 4.79 ± .05
EMS ↓ 4.01 3.77 3.13

entities in the text are also missing. The proposed method is more
visually clear, the layout is more natural, and it has a better match
with the text conditions, and the main entities are also better
captured.

Therefore, from the quantitative and qualitative experimental
esults, the proposed method significantly exceeds the current
aseline model in visual quality and text consistency, and can
ell highlight the main entity targets in the text. In addition, for
he two fusion generation methods based on entity representa-
ion learning, in view of the better performance and higher time
fficiency of the EIF-LS model, we chooses the EIF-LS model to
ontinue compare with two state-of-the-art models.

.3. Implementation based on AttnGAN

We also implement our EIF-LS based on AttnGAN and compare
he results with the state-of-the-art models such as AttnGAN and
irrorGAN on CUB dataset. In this part, we use the same three-
tage generator as AttnGAN, and generate 256 × 256 images in
he last stage. Two kinds of entity label were used in our exper-
ment. One is using the former category information as baseline,
nd the other is introducing attribute information [24], such as
he color, shape and size of different parts of a bird. There are total
8 attributes of different parts and 312-dimensional binary vector
as provided in the dataset and we are the first to try to use
hese features, which is generally served for image classification,
o enhance the image generation. The specific attributes and the
orresponding parts are shown in the Table 3. From Table 3, we
an find that these attributes are much more fine-grained than
he separate category label. Obviously, the second entity label can
rovide richer entity information than the first one.
In the baseline method, we process the entity information

ith the same method as the implementation based on Stack-
AN, and we use pretrained text encoder to replace the pre-
rained sentence embedding for calculating the attention be-
ween each word and the sub-region of the image. While we
hoose the second kind of entity label, we replace the category
abel with a 312-dimensional attribute vector, and the parts of
ext processing are consistent. We compare quantitive results
f the two different entity labels in Table 4, and show images
enerated by the last stage of better model in Fig. 7.
From Table 4, it can be observed that MirrorGAN gives su-

erior results compared to AttnGAN. But our EIF-LS built on
ttnGAN achieves the highest IS and EMS scores, outperforming
irrorGAN.
8

The samples of the proposed method based on AttnGAN is
been shown in Fig. 7. The results show that AttnGAN-based
method can generate higher resolution images with more de-
tails and our work also acts on improving image quality and
consistency. From Fig. 7 and Table 4, we can find that methods
with lower EMS score show better relevance of entities in text
and image space and it can confirm the effectiveness of the EMS
metric.

To further illustrate the effect of entity information fusion, we
conduct experiments using different types of entity information
in CUB dataset. The results are shown in Table 5. Compared
with using the label of ‘‘category’’, attribute labels provides a
more fine-grained constraints for text to image generation. The
results show that if more entity knowledge can be reasonably
incorporated in the training, the quality of generated images
will be improved correspondingly. This ablation study further
demonstrates the necessity of incorporating entity information.

4.4. Ablation study on EIF-LS framework

To gain better insights into our proposed frameworks, we con-
duct an ablation study on the more optimal framework, EIF-LS, on
CUB.

Different Ways of Latent Space Fusion
We first evaluate the different ways of latent space fusion

and show the results in Table 6. We can see the concatena-
tion of the latent variable representing the entity representation
and that of sentence embedding (EIF-LS-Concat) gives the best
results overall, and it significantly outperforms the baseline on
EMS. We also notice that fusing latent variables through summa-
tion (EIF-LS-Sum) or element-wise production (EIF-LS-Product)
is less effective and both perform worse compared to StackGAN
on IS. However, the generation consistency is still improved on
EMS. We suspect that latent variable fusing by summation or
element-wise production may lose some information but the
entity representation is helpful to the consistency.

Capsule Network in Generator
In order to learn the entity representation and global seman-

tics better, we introduce the capsules in both the generator and
discriminator networks as presented in Section 3.3. The results of
the Generator with Capsules (with G-Cap) are shown in Table 7.
Compared Table 7 with Table 6, we can see that the scores of the
generator with capsules are better than the one without across
all latent space fusion methods on both metrics. This shows that
the generator with capsules is an effective combination compared
with the generator with fully connected layer. Also, EIF-LS-Sum
and EIF-LS-Product with G-Cap are comparable with StackGAN
and EIF-LS-Concat with G-Cap significantly outperforms Stack-
GAN with 11.6% improvement on IS and 17.4% improvement on
EMS.
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Fig. 7. The frameworks based on AttnGAN. The generated 256 × 256 samples from CUB test set.
Table 5
Results of different entity information on CUB with 256 × 256 resolution. N in EMS metric is set as 30,000 on CUB.
Methods AttnGAN EIF-LS

w/category
EIF-LS
w/attribute

EIF-LS
w/category + attribute

CUB IS ↑ 4.36 ± .03 4.67 ± .05 4.71 ± .05 4.79 ± .05
EMS ↓ 4.01 3.39 3.39 3.13
Table 6
Results of different latent space fusion on CUB.
Methods StackGAN EIF-LS-Sum EIF-LS-Product EIF-LS-Concat

CUB IS ↑ 3.35 ± .02 3.05 ± .03 3.10 ± .05 3.48 ± .02
EMS ↓ 4.95 4.60 4.71 4.53
Table 7
Results of generator with capsules on CUB.
Methods StackGAN EIF-LS-Sum

w/G-Cap
EIF-LS-Product
w/G-Cap

EIF-LS-Concat
w/G-Cap

CUB IS ↑ 3.35 ± .02 3.39 ± .03 3.27 ± .03 3.73 ± .05
EMS ↓ 4.95 4.52 4.51 4.09
Table 8
Results of discriminator with capsules on CUB.
Methods StackGAN EIF-LS-Concat

w/D-Cap
EIF-LS-Concat
w/G-Cap;w/D-Cap

CUB Inception Score ↑ 3.35 ± .02 3.71 ± .02 3.45 ± .03
EMS ↓ 4.95 4.50 4.52
Capsule Network in Discriminator
Similarly, we conduct experiments on the discriminator with

apsules using the concatenation of latent variables and show
he results in Table 8. We can see that the combination of EIF-
S-Concat and Discriminator with Capsules gives a similar result
9

on IS but poor performance on EMS compared to EIF-LS-Concat
with G-Cap. This may be because capsule network increases the
complexity of the model and increases the risk of overfitting of
the entity discriminator on the CUB. However, putting everything
together (EIF-LS-Concat + G-Cap + D-Cap) results in worse per-
formance. We speculate that this is partly due to the difficulty in
training GAN-like models when model complexity increases.
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. Conclusion

In this paper, we have proposed two novel frameworks for in-
orporating entity information into existing text-to-image archi-
ectures. In our work, the entity information and sentence seman-
ics are learned simultaneously to complement and strengthen
ach other. The main difference between the two is the time
o fuse the entity representation and global semantics and the
xperiments show that fusion in low dimensional hidden space
an generate images with higher quality. We have also explored
sing capsules to further exploit the learning ability of entity rep-
esentation and improve the performance. Experimental results
how that the proposed approach significantly outperforms the
aselines. In the future, we plan to investigate explicitly encod-
ng entities and spatial information to better guide the image
eneration process.

RediT authorship contribution statement

Deyu Zhou: Conceptualization, Supervision, Writing - review
& editing. Kai Sun: Methodology, Code, Writing - original draft.
ingqi Hu: Methodology, Code, Writing - original draft. Yulan
e: Writing - review & editing.

cknowledgements

We are grateful to the reviewers for their valuable com-
ents and constructive suggestions. This work was funded by

he National Key Research and Development Program of China
2016YFC1306704), the National Natural Science Foundation of
hina (61772132), the EPSRC (grant no. EP/T017112/1, EP/V0485
7/1) and a Turing AI Fellowship funded by the UK Research and
nnovation (UKRI) (grant no. EP/V020579/1).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt
Schiele, Honglak Lee, Generative adversarial text to image synthesis, in:
Proceedings of the 33rd International Conference on Machine Learning,
vol. 48, PMLR, 2016, pp. 1060–1069.

[2] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei
Huang, Dimitris N Metaxas, Stackgan++: Realistic image synthesis with
stacked generative adversarial networks, IEEE Trans. Pattern Anal. Mach.
Intell. 41 (8) (2018) 1947–1962.

[3] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei
Huang, Xiaodong He 0001, AttnGAN: Fine-grained text to image generation
with attentional generative adversarial networks, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
1316–1324.

[4] Diederik P. Kingma, Max Welling, Auto-encoding variational Bayes, in: 2nd
International Conference on Learning Representations, ICLR 2014, 2014.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative adversarial
nets, in: Advances in Neural Information Processing Systems, 2014, pp.
2672–2680.
10
[6] Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee, Attribute2image: Con-
ditional image generation from visual attributes, in: European Conference
on Computer Vision, Springer, 2016, pp. 776–791.

[7] Ali Razavi, Aäron van den Oord, Oriol Vinyals, Generating diverse
high-resolution images with VQ-VAE, in: DGS@ICLR, OpenReview.net, 2019.

[8] Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton, Dynamic routing between
capsules, 2017, arXiv preprint arXiv:1710.09829.

[9] Aäron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel recurrent
neural networks, 2016, http://arxiv.org/abs/1601.06759.

[10] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex
Graves, et al., Conditional image generation with pixelcnn decoders, in:
Advances in Neural Information Processing Systems, 2016, pp. 4790–4798.

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, Image-to-image
translation with conditional adversarial networks, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
1125–1134.

[12] Augustus Odena, Christopher Olah, Jonathon Shlens, Conditional image
synthesis with auxiliary classifier GANs, in: Proceedings of the 34th
International Conference on Machine Learning, vol. 70, PMLR, 2017, pp.
2642–2651.

[13] Takeru Miyato, Masanori Koyama, cGANs with projection discriminator, in:
International Conference on Learning Representations, 2018.

[14] Han Zhang, Ian Goodfellow, Dimitris Metaxas, Augustus Odena, Self-
attention generative adversarial networks, in: International conference on
machine learning, PMLR, 2019, pp. 7354–7363.

[15] Mingqi Hu, Deyu Zhou, Yulan He, Variational conditional GAN for fine-
grained controllable image generation, in: Asian Conference on Machine
Learning, 2019.

[16] Tobias Hinz, Stefan Heinrich, Stefan Wermter, Generating multiple objects
at spatially distinct locations, 2019, arXiv preprint arXiv:1901.00686.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick, Microsoft coco: Common
objects in context, in: European Conference on Computer Vision, Springer,
2014, pp. 740–755.

[18] Tingting Qiao, Jing Zhang, Duanqing Xu, Dacheng Tao, MirrorGAN: Learn-
ing text-to-image generation by redescription, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
1505–1514.

[19] Guojun Yin, Bin Liu, Lu Sheng, Nenghai Yu, Xiaogang Wang, Jing Shao,
Semantics disentangling for text-to-image generation, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 2327–2336.

[20] Seunghoon Hong, Dingdong Yang, Jongwook Choi, Honglak Lee, Inferring
semantic layout for hierarchical text-to-image synthesis, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 7986–7994.

[21] Tobias Hinz, Stefan Heinrich, Stefan Wermter, Semantic object accuracy for
generative text-to-image synthesis, 2019, arXiv preprint arXiv:1910.13321.

[22] Zhang Han, Xu Tao, Hongsheng Li, StackGAN: Text to photo-realistic image
synthesis with stacked generative adversarial networks, in: 2017 IEEE
International Conference on Computer Vision (ICCV), 2017.

[23] Alec Radford, Luke Metz, Soumith Chintala, Unsupervised representation
learning with deep convolutional generative adversarial networks, 2015,
arXiv preprint arXiv:1511.06434.

[24] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, Serge
Belongie, The caltech-ucsd birds-200-2011 dataset, 2011.

[25] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, Xi Chen, Improved techniques for training gans, in: Advances in
Neural Information Processing Systems, 2016, pp. 2234–2242.

[26] Scott Reed, Zeynep Akata, Bernt Schiele, Honglak Lee, Learning deep
representations of fine-grained visual descriptions, in: IEEE Computer
Vision and Pattern Recognition, 2016.

[27] Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in: ICML, in: JMLR
Workshop and Conference Proceedings, vol. 37, JMLR.org, 2015, pp.
448–456.

[28] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spec-
tral normalization for generative adversarial networks, in: International
Conference on Learning Representations, 2018.

http://refhub.elsevier.com/S0950-7051(21)00462-7/sb1
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb1
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb1
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb1
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb1
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb1
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb1
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb2
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb2
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb2
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb2
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb2
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb2
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb2
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb3
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb4
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb4
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb4
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb5
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb5
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb5
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb5
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb5
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb5
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb5
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb6
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb6
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb6
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb6
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb6
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb7
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb7
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb7
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb8
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb8
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb8
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb9
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb9
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb9
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb10
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb10
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb10
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb10
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb10
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb12
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb12
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb12
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb12
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb12
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb12
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb12
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb14
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb14
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb14
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb14
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb14
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb16
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb16
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb16
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb17
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb17
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb17
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb17
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb17
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb17
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb17
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb21
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb21
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb21
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb23
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb23
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb23
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb23
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb23
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb24
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb24
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb24
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb25
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb25
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb25
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb25
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb25
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb27
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb27
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb27
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb27
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb27
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb27
http://refhub.elsevier.com/S0950-7051(21)00462-7/sb27

	Image generation from text with entity information fusion
	Introduction
	Related work
	Methodology
	The baseline models used to implement the frameworks
	Framework1: Entity Information Fusion in Image Space (EIF-IS)
	Framework2: Entity Information Fusion in Latent Space (EIF-LS)
	Training

	Experiments
	Datasets and evaluation
	Implementation based on StackGAN
	Implementation based on AttnGAN
	Ablation study on EIF-LS framework

	Conclusion
	CRediT authorship contribution statement
	Acknowledgements
	Declaration of competing interest
	References


